EUROPA, : Plan Database Services for Planning and Scheduling Applations
UNPUBLISHED - DO NOT DISTRIBUTE

Tania Bedrax-Weisst and Jeremy Frank and Ari J bnssod and Conor McGann*
Computational Sciences Division
NASA Ames Research Center
Mailstop 269-4
Moffett Field, CA 94035-1000
{bachmann,tania,frank,jonsson,cmcgg@®email.arc.nasa.gov

Abstract ence goals. Controllers onboard terrestrial Unmanned Au-
tonomous Vehicles (UAVs) such as Rotorcraft (Whaliy

al. 2003) must reason about the state of communication sys-
resources such as robotic arms, communications antennae tems_,_onboard pr_;lylo_ads such as imagers, and how image ac-
and cameras; complex replenishable resources such as mem- quisition constrains intended maneuvers such as banks and
ory, power and fuel; and complex constraints on geometry, ~ Climbs, in the face of complex flight dynamics. Autonomy
heat and lighting angles. Planners and schedulers tha solv ~ Systems (Dias, Lemai, & Muscettola 2003), (Despouys &
these problems are used in ground tools as well as onboard Ingrand 1999) as well as ground tools (Bresatal. 2003)

NASA missions require solving a wide variety of planning
and scheduling problems with temporal constraints; simple

systems. The diversity of planning problems and applicatio for robots like the Mars Exploration Rovers (MER) require
of _planners and schedulers precludes a "one-size fit§ all” so reasoning about thermal models, available power and re-
lution. However, many of the underlying technologies are maining memory, as well as the location of the rover rel-

common across planning domains and applications. We de- atjve to intended science targets and how to choose from
scribe CAPR, a formalism for planning that is general enough 513014 available science operations. Image Processing plan
o cover a wide variety of planning and scheduling domains ning (Goldenret al. 2003) requires reasoning about feasible

of interest to NASA. We then describe EUROPAa soft- f
ware framework implementing CAPR. EUROPBrovides image manipulation operations, available web services, as

efficient, customizablé®lan Database Servicethat enable well as the state of underlying computer file systems, in-
the integration of CAPR into a wide variety of applications. cluding the location of inputs and outputs of processing op-
We describe the design of EUROP&om the perspective of erations.

both modeling, customization and application integration The diversity of planning problems and applications of

different classes of NASA missions. planners and schedulers precludes a "one-size fits all* solu

tion. Different planning paradigms apply more naturally to
Introduction differen_t planning prpblems, _and different applicatioms r
_ o _ i i quire different planning services. For example, planetary
Inspired by NASA's missions that require solving awide va- - rover domains require one form of path planning, UAVs re-
riety of planning and scheduling problems, each of which qyire quite different forms of path planning, while satelli
must be integrated into different operating environmemés, domains such as EO-1 do not require path planning at all.
set out to formalize and implement a planning framework on - path planning generally requires reasoning about concepts
which many of these mission scenarios can be built. Our that are immutable with respect to time, and so does im-
llar and that such a framework will be widely applicable. RaX require reasoning with resources, EO-1 and MER fea-
The Remote Agent Experiment (RAX) on the Deep Space 1 tyre onboard memory resources, while the RAX does not.
Spacecraft (Muscettolet al. 1998), (Jonssoet al. 2000) In either of these cases, reasoning about time is important.
featured a planner on board a spacecraft that required rea-Fyrthermore, in onboard systems such as spacecraft, UAVs
to navigation aids, and the state of hardware resources like g|gorithms that guarantee optimality. Additionally, some
cameras. The EO-1 ScienceCraft experiment (Teaal. applications require that the planner provide incomplete s
2004) is another onboard planner that must reason about on-ytions, such as those where the planner interfaces with an
board memory and CPU resources, communications oppor- intelligent executive that is able to “fill in the blanks”. Hu
tunities to replenish memory, and options for satisfying sc man operators or other autonomous sub-systems may look at
~ 0SS Group, Inc. _pIans, and request changes or explanations, ultimatedy lea
TAuthors listed in alphabetical order. Ing to n.eW planning prpblems. .
tUSRA-RIACS Despite the great diversity of planning problem classes,
Copyright © 2005, American Association for Artificial Intelli- planners and applications, there is considerable commonal
gence (www.aaai.org). All rights reserved. ity among planning and scheduling problems, solvers and

Executive Commands

—»

Percepts

Insertions &
\ Restrictions

Planner User ' |

_—

Partial .
Plan (P)

Planner |

Plan

Insertions,
Deletions,
Restrictions
& Relaxtaions

Restrictions
& Relaxtaions

\ 4
J—

Partial
Plan (P) I

Planning

Partial Plan

Plan (Q)

Plan

Database Planning

a) Batch Planner

Database

d
i

b) Mixed Initiative Planner

Database

Restrictions Planning)
& Relaxtaions

Restrictions

Partial & Relaxtaions

Plan (Q) Planner

Commands —Jp]

c) Plan-based Executive with
On-Board Replanning

Figure 1: Sample Plan Database Applications

applications. This commonality can be aggregated into a
set of plan services that we call tRéan Databasehat are
provided to build such applications. Consider the scesario
illustrated in Figure 1. The first is an application of auto-
mated planning where the input planning problem is solved
by aPlannerto produce an acceptable partial plan. The role
of the Planneris to perform the search steps for resolving
flaws. Thus it interacts with a partial plan by imposing and
retracting restrictions. All operations are made on Rifen
Databasewhich stores the partial plan. The second is an
application of automated planning in concert withuaer.

The User may introduce goals into a plan, and change or
undo decisions previously made by a Planner. Additionally,
a User may employ a Planner to work on the current par-

Constraint-Based Planning with Resources

In this section we describe Constraint Based Planning with
Resources (CAPR). CAPR is a modification of Constraint-
Based Attribute and Interval Planning (CAIP) (Frank &
Jonsson 2003), a formalism that employs variables and con-
straints as first-class objects to describe complex plannin
domains. CAPR relaxes some of the more restrictive as-
sumptions made in CAIP, resulting in a more generally ap-
plicable formalism. In particular, we include general re-
sources as first-class citizens in the planning formalisrd, a
separate subgoaling and causal models from the resource
model. We will show later that we lose none of the repre-
sentational power of CAIP by having made these changes.
We first describe the formalism in grounded terms, in

tial plan. In this case, changes are also made in response towhich all primitives are predicates. We then provide a more

gueries and operations on tRtan Databaseln the last fig-
ure, planning technology is deployed for plan execution. A
partial plan may be used by &xecutivefor execution. In
such a scenario, the partial plan is updated throughoutiexec

easily managed formalism using constraints and varialsles a
primitives.

Grounded case

tion. The Executive may employ incomplete searchtorefine o ioken is a logical statement of the form

the partial plan as it goes. A Planner may be employed to holds(s, e, p(ay,....ax))where s < e are start and
repair a plan or develop a refinement of the plan as the mis- ongq times p is a predicate symbol and,...,a; are

sion progresses. In each of the cases descridieis(i.e. parameter values. Tokens generalize actions and state, and
Planner, User, Executive) leverage the services of a common merely assert that some property of interest is true for a
server thePlan Database period of time.

We have created a robust formal framework called Con- A resourcel is defined by a tupl€ir, g, Lr) wherei is
straint Planning with Resources (CAPR) that supports many the initial level,/ is the minimum levell is the maximum.
commonly used representational primitives and reasoning A transactionis a numerical change in a resource over a
engines. We describe this formalism in the next section of specified interval. Itis defined as a tugle, ¢, t., §) where
the paper. This formal framework provides the underpin- R is a resource;, < t. are times denoting the start and end
nings for the Plan Database, called the Extensible Universa time of the transaction, andlis a function mapping each
Remote Operations Architecture (EUROPA This idea is t € [ts, tc] to a numerical value.
similar to the approach taken by the CLARATy roboticscon- ~ An instantaneous transactide a transaction wherg =
trol architecture (Nesnaat al. 2003) or MDS (Dvoralet al. t. and is sometimes written 4&, ¢, 5) .

2000), as well as constraint reasoning systems such as ILOG A configuration ruleis an implication of the fornf” =
(ILOG 1996). CiVvCyV---Vv (O, whereT is a token and eact; is a

L . . L conjunction of the formf; 1 A - - - A S; &, where eacl$; ; is
Applications will require customization of the Plan iher a token or a transaction.

Database to support only those primitives needed by the do- L . o
main (e.g. time, resources), and to implement an apprepriat D€finition 1 A planning domainD is a tuple (7,R,C),
planner (e.g. an optimizing planner versus one with real- Where7 is a set of tokensR is a set of resources, ard
time guarantees). We describe how to build domain models S & et of configuration rules.
for EUROPA, as well as how to build custom planners. In Definition 2 A resource profildor a given planP and re-
the final sections of the paper, we discuss related work, and source(ig, (g, Lr) from the domain for that plan is a func-
conclude with a discussion of our future plans. tion Ar(t) defined as follows:

e We first define a cumulative impact functidn for each
transactionT’; in P as follows:

— If T; is a non-instantaneous transaction , defihgas

the integral ofd, defined asA;(t) = 0 for ¢ < ts,

Ai(t) = [I_, 8(r) for t € [t,,t.] and A;(1)
f:;ts 5(r) fort > t..
— If T; is a instantaneous transaction , defifg(t) = 0
if t <ts,andA;(t) =6(¢t)if t > ¢s.
e Then, for each time poitt Ar(t) = >, A;(t).

Aresource profile\g(¢) for aresourcéir, lr, Lr) and plan
Pisvalidif ip < Ag(t) < Lg for all timepointst.

A partial planis a set of tokens along with the applicable
transactions defined by the domain rules.

A partial plan@ is anextensiorof a partial planP if each
token in P can be mapped to a matching tokergJn

Definition 3 A partial plan P is valid if;

e for each tokerl’ in P, and for each configuration rule
T = CyV---VC,, there exists g € [1,n] such that
whereC; = S;1 A -+ A S;x,, each of the tokens and
transactionsS; 1,. .., S, arein P.

e the resource profile for every resource is valid

A planning problemis a pair,(D, P) whereD is a planning
domain andP is a partial plan. Asolutionto the planning
problem is a plar) that is a valid extension af.

Lifted case

The grounded formalism is inconvenient since it may require
large numbers of token descriptions and rules. It is more ef-
fective to compress these definitions by using variables and
constraints as the primitive elements of the planning damai
descriptions.

A domainis a list of primitive values. Apredicate defi-
nition is a tuple(p, D, ..., D) consists of a predicageand
a (possibly empty) set of domains, which define the number
of arguments and the argument domains for the predicate.

A resource definition like before, is a tuple
(ir,lr, Lr)where i is the initial level, I is the mini-
mum level and’ is the maximum.

A token specifies a predicate instantiation holding
over a period of time. Formally, daokenis a tuple
(s,e,p,a1,...,ar) Wheres ande are temporal variables, and
eacha; is a variable whose domain is restricted?p. (Note
that a duration variablé can be defined for convenience, but
is not necessary.) We distinguish the domain of a variaple
in a token aslonai n(a;), as opposed to a domain used in
a predicate definition.

A transactionis a defined by R, s, e, §) as before, except
that R, s ande are variables. Instantaneous transactions en-
force the constraint = e.

A compatibilityis a way to represent large collections of
configuration rules compactly. It is an implication of the
formH = B; VBV ---V = B,. The headH is a tuple
(p, En, ..., Ex), wherep appears in a planning domain pred-
icate definition(p, D1,...,D,) such thatt; C D,;. Each
B, is a conjunction of the forn§; 1 A- - - A S; x, Where each
S, ; is of the form:G; ;;C; ; whereG, ; is a predicate or a

transaction, and; ; is a set of constraints relating variables
in the head predicate ar@; ;. A token(s,e,p,ar,...,ax)
matchesa compatibility headq, E1, ..., Ex) if p = ¢ and
Vi,domain(a;) C F;.

A planning domairis a tuple(P, R,C) whereP is a set
of predicate definitionsR is a set of resource definitions,
andC is a set of compatibilities.

A resource envelopéor a given planP and resource
R = (igr,lr,Lr)is a pair of functionsL,,,, r(t)and
Lin,r(t) which are defined as follows: L&, Q-, ... be
the set of all grounded extensions®f Let A% (¢) be the re-
source profile forQ;. ThenL,,q, r(t) = max; /\%(t) and
Lpnin,r(t)= min; N5(t). A resource envelope igalid
if Ir < Lpin,r(t)< Lr andlr < Lpaer(t)< Lr
for all timest. A resource envelope igiolated if either
Lyaz, r(t) < Ir OF Lynn r(t) > Ly for somet. A resource
envelope isundeterminedf it is neither valid nor violated.

A constraintc is a relation among the values of a set
of variablesa,...ay; that is, L C domain(a;) X ... X
domain(ay). A constraintc is satisfiedif all possible in-
stantiations of its variables yield assignments in thetiaia
L. A constraintc is violatedif no instantiation of its vari-
ables yields an assignment within the relatibnFinally, a
constraint isundeterminedf it is neither satisfied nor vio-
lated.

A partial planis a set of tokens and a set of constraints.
Each token in a partial plan is eitheupportedor unsup-
ported A tokenT is supported if for every compatibility
where the head matches withthe compatibility has at least
one disjunctB; such that for each conjuné; ;; C; ; in B;,
the plan contains a token that matcligs; and has all corre-
sponding constraints iy ;. Any token that is not supported
is unsupported. Finally, any given partial pl&h defines
a set of resource transactions, and associated resource en-
velopes.

A patrtial planP is completéf all tokens are supported. A
partial planP is valid if the resulting resource envelopes are
valid, and all constraints i# are satisfied.

A planning problenis a planning domaifP, R,C) and a
partial planP from that domain. Asolutionto the planning
problem is a complete and valid plghthat is an extension
of P.

Decision Model and Completeness results

We next describe the flaw mechanisms and the associated
search path options. In backwards chaining, unsatisfied pre
conditions are flaws that must be resolved before achieving
an complete plan. In POCL planning, the flaws are open
conditions and unresolved threats. In CAPR, flaws are ei-
ther undetermined constraints, undetermined resourees, 0
unsupported tokens. As we will see below, flaw resolution
for all three of these cases is accomplished by constraining
the domain values of variables.

Undetermined constraints: Suppose we have a partial
plan P with a variablev in a constraint that is undeter-
mined. Normally, unassigned variables are simply assigned
single values until constraints are known to be satisfied.
However, it is possible to proceed by imposing constraints

that restrict variables’ values.

Undetermined resources: Suppose we have a partial
plan P with a resource that is undetermined. In most cases
it is too expensive to calculatd,, ., r(t) and Ly r(t) .
because it would require calculating all of the grounded ex-
tensions@;. Thus we must bound abowg,,., r(t)and
bound belowL,,;, r(t)to determine validity. When all
transactions are grounded we can deternfipg,.. r(t) and
Lyin,r(t) ; for this reason, flaws on resources are usually
satisfied by assigning transaction timepoint variablegp-Su
pose the problem is such that no incomplete token decisions
will ever arise as flaws are resolved. In this case, we are
left with a scheduling problem If we further restrict our-
selves to the case of scheduling instantaneous transagction
we can use techniques such as those described in (Frank
2004; Muscettola 2002) to tightly bound,,.. r(t)and

applicable:

e If a tokenT of P is unsupported, there is a supported
tokenV in @ that matchesl’; use this token to satisfy
T, either by choosing a disjund®;, by satisfying a con-
junctsS; ;; C; ; with an existing matching token iR, or by
adding a new token t@.

If a variable v is unassigned, there is a matching vari-
ablew in @; use this variable to assign the value of
Note that this covers the case of deciding which available
resource a transaction is assigned to.

e If a constraint among variables i® has not been im-
posed, us&) to impose that constraint. Note that this
covers the case of ordering timepoints.

Sinceq is finite andP, at each stage, is a subset @f

L..in,r(t) . In some circumstances, partial orders of trans- the process halts with a complete pl&n And, since the set

actions are sufficient to guarantee that the resource is prov
ably valid. For these cases, flaw resolution can be accom-
plished by only ordering transaction timepoints.
Unsupported tokens: Finally, suppose we have a partial
plan P with a tokenT =(s,e,p,as, ..., ax) that is unsup-
ported. There is at least one rule whose head unifies with
(matches)I. For each such rule, one of the disjunés
must be chosen in order to satisfy the rule. This can be
thought of as a value choice for a variable. Each disjunct
consists of a conjund¥; ;; C; ; whereG; ; is a predicate de-
scription or transaction. I7; ; is a transaction, a resource
must be chosen for the transaction; this too is a variable
choice. IfG; ; is a token, then le¥ be the set of tokens
that can be unified witld; ;, along with one extra element,
T, representing the use of a new token. Then, the decision
to be made is which element of to select. Once again,
this can be viewed as a variable choice. Note that only if
is chosen, resulting in a new token, will any new compati-
bilities apply to tokens in the pla®. However, ifG; ; is
unified with V' € V, all the constraints i€; ; are added to
constrain the variables i and7". These constraints gener-
alize causal links in the same manner as CAIP.
Completeness results:We are now ready to show that
this decision model is sufficient for solving planning prob-
lems in CAPR. As was true in the CAIP framework (Frank &
Jonsson 2003), there may be solutions to a planning problem
that are not reachable given the domain description and the
decision model. However, we can still prove that there is a
plan that is a complete and valid extension of the domain de-

of constraints inP, at each stage, are a subset of those in
Q, constraint validity inR is obvious. The only remaining
part is to show that all resources are valid iR. First, it

is easy to see that a resource I cannot be violated, as

Q is an extension of? and the profile is defined based on
all extensions. Second, the resource cannot be neither vio-
lated nor valid, as that will give rise to flaws and the process
does not halt until there are no other flaws. So, the resource
envelopes must also be valid. Thuisjs a complete valid
extension of?, and is a subset a.

EUROPA,

EUROPA; implements aPlan Databasemotivated by the
CAPR formalism to provide planning services to allow for
implementation of a wide variety of planners and schedulers

These services include:

e Domain modeling: for describing planning domains
e Partial plan representation: for maintaining partial glan
e Flaw generation: for generating flaws from a partial plan
e Flaw resolution: for resolving flaws in a partial plan

e Plan assessment: for determining plan completeness or
violations

e Constraint propagation: for propagating the consequences
of constraints

scription and decision model such that the unreachable plan To meet the needs of missions and research projects, the de-

is an extension of this plan. This situation arises because
there is nothing in the formalism to prevent adding arbjtrar
tokens that don’t have compatibilities associated witmthe

Theorem 1 Given are a finite planning domaif, R, C)
and a finite length partial pla®. Assume thaf) is a com-
plete and valid finite length extension Bf Then, there ex-
ists a planR, that is a complete and valid extension Bf
such that a sequence of flaw resolutions transfofmato
R, andQ is an extension af.

Proof 1 Asin (Frank & Jbnsson 2003), we will us@ as a
"heuristic” to describe how to transforn® into R. While

sign of the Plan Database must be: 1. Efficient to ensure low
latency for operations and queries; 2. Flexibile to ensure
services can be selected and flexibly integrated; 3. Extensi
ble to ensure services can be enhanced to meet the needs of
research or mission applications.

We use a planning domain loosely based on the MER
mission to show the services provided by EURGPANe
assume the application in question is one of producing
daily activity plans for operation of a planetary surface
robot namedRover Roveris a mobile robot that can take
panoramic images. Roverhas a battery on board, and can
replenish its energy levels using solar power.

Planning Domain Descriptions with NDDL

Planning domain descriptions for EUROP&re written in

the New Domain Description Language (NDDL). NDDL
provides an object-oriented syntax and semantics thatsnake
it convenient to express sophisticated relationships amon
elements of a partial plan. In this section we will describe
NDDL and show how the syntax translates to the CAPR for-
malism.

Predicates A predicate in CAPR defined as
(p, D1, ..., Dy)is directly described in NDDL. For ex-
ample, aRover might be at alLocation or it might be
moving from one location to another. The predicatean
be introduced with:

predi cate At {Rover r;

wherer and| refer to the set of all rovers and the set of
all locations respectively. Similarly we can introduce the
predicateGoing

Location I;}

predi cate Goi ng{Rover r;
Location from
Location to; }

RoverandLocationare user-defined types which may be
expressed using enumeration:

enum Rover {spirit,

or through the more expressive use of an abstract data
type, orclass

opportunity}

cl ass Rover {}
class Location {
int x;
inty;
Location(int x,
X
y
}

int y){

X;
Y

}

Thus, class describes an unchanging object. Instances of
classes, i.e. objects, may be introduced by construction:

Rover spirit = new Rover();

Rover opportunity = new Rover();
Location rock = new Location(1, 1);
Location hill = new Location(2, 3);
Location | ander = new Location(5, 8);

Predicates denote properties of a class that change over

time. For convenience, predicates may be defined directly
on a class. A predicate contains a reference to the set of
instances of the class that can be accessed through the built
in variableobject We may concisely restate our predicate
definitions by augmenting thiRoverclass:

cl ass Rover {
predi cate At {Location I;}
predi cate Goi ng{Location from
Location to; }

}

Compatibilities Suppose thaRoveris not permitted to go

to the same location it is leaving. Furthermore, suppoge tha
everyGoing must be followed by art and vice versa. To
express these domain rules, we introducempatibilityfor
each predicate. Recall that a token is defined in CAPR as
(s,e,p,ai,...,ar). The compatibility forAt given below

shows the twdsoingsubgoals with constraints imposed on
their predicate parameters including the implatifjectvari-
able and itstartandendvariables.

Rover: : At {
/1 Require a Coing token on sane
/1 object which succeeds this token
subgoal (Goi ng g0);
eq(g0.start, end); // Equate tinmepoints
eq(g0.from 1); // Equate paraneters
eqg(g0. obj ect, object);
/1 Require a Coing token on sane
/| object which precedes this token
subgoal (Goi ng g1);

eg(gl.end, start); // New constraint
eq(gl.to, 1); // New constraint
eq(gl. object, object);

}

It is convenient to express temporal relationships and
NDDL provides constructs for the Allen relations aug-
mented with metric time. The NDDL Allen relations are
shorthand for creating a subgoal token with the associated
temporal constraints. Furthermore, we can usethjeect
variable to specify the constraint that the token must be
on the same object as tkei ng token. The compatibilities
for Goingcan be expressed more concisely as follows:

Rover : : Goi ng{
neq(to, fronm); // to != from
neet s(obj ect. At a0);
eq(a0.1, to);
net _by(obj ect. At al);
eq(al.l, from;

}

Suppose instead that tlovercan either go to another
location or stay at the current location and take a panoramic
image. In NDDL the disjunction is explicitly represented as
a boolean variable:

Rover: : At {

/1 disjunctive rule for successor:

bool next;

if (next==false) {
nmeet s(obj ect. Goi ng g0);
eq(go.from 1);

}

if (next==true) {

neet s(obj ect. Takel ng i 0);

}

}

Resources and Transactions To illustrate the use of re-
sources in NDDL, we introduce a battery which stores en-
ergy produced from solar panels and allows energy to be
consumed by rover activities.

cl ass Rover {

Resource battery;
Rover () {

battery = new Battery(10, 3, 30);
}

We declare a predicate for power generation:

predi cat e gener at ePower {Resource r; cl ass Rover extends Tineline {
float rate; } predi cate At {Location I;}
predi cate Goi ng{Location from
Location to; }
Resource battery;
Rover () {
battery = new Battery(10, 3, 30);

and define a rule linking it to transactions on a resource.
Note that the current EUROBAmplementation is limited
to handling instantaneous transactions. Consequerathg-r
actions are typically defined as occurring at the start or end
of tokens. Instantaneous transactions in CAPR are defined
by (R, t,0) and are identical in NDDL:) }
Static Objects Suppose that in th®over planning do-
main only some paths in the survey area are traversable, and
traversability does not vary over time. NDDL offers the abil
ity to describe data that holds independently of time:

gener at ePower {
/1 produce transaction at the end
ends(r.transaction tx);
/1 relation to derive instantaneuos
/'l change fromrate and duration

cal cProduction(tx. quantity, class Path {
rate, start, end); Location |ocl;
} Location | oc2;
Pat h(Location 1, Location 12){

Finally, the compatibility forGoing can be augmented

. A ! locl = 11;
with a consumption transaction on the battery where the loc2 = 12t
guantity is based on the distance travelled: } o
o }
subgoal (obj ect. battery. transaction tx); The set of path instances can be populated by:
cal cConsunption(tx.quantity, from to); .

Lo Path pl = new Path(rock, hill);
/1 Consunme at the beginning .
. . Path p2 = new Path(hill, |ander);
eq(tx.time, start); !)
Path p3 = new Path(martian-city, |ander);

Timelines A common special case of resources can be

used to express what CAIP called Timelines. Timelines en-

force mutual exclusion between tokens and also impose the
constraint that the timeline must be covered by tokens re-
flecting the state of the timeline at each timepoint. In CAPR, |- A" ;
this semantics can be enforced by using a reusable unary re—WéII gﬁgu% Inthe example, the initial values fpwill be p1,
source with initial capacity 1, minimum level of 0 and max- P< P

imum level of 1, so that the planner must place one and only Rover: : Goi ng{

one transaction that uses the resource at each availalgle tim Path p : {
eq(p.locl, from;

The Going predicate can now check the existence of a
path by using a filter. A filter operates on a variable whose
domain is restricted via propagation. Should there be no
path, the variable’s domain will be empty and a violation

cl ass Rover { eq(p.10c2, to);
ﬁ.elsource mut ex; } }
Rover () {
mutex = new Resource(1, 0,1); Partial Plans in EUROPA,
}
) In this section we discuss the representation and manipula-

Th tion of partial plans in EUROPA
en, we specify appropriate use transaction require- A nartial plan for the rover planning domain is created
ments in the compatibilities fokt andGoing with the following statement:

goal (Rover. Going Q;

Il Co he begi nnni I . .
reure at the begl nnwng This introduces a toke® for the predicateGoing de-

subgoal (Resource. transacti on tx0);

eq(tx0. obj ect, obj ect. mut ex) ; fined on the clasRkover The result is the partial plap
eq(tx0.tine, start); = {{G},{}}. Along with G the following variables are in-
eq(tx0. quantity, -1); troduced to the Plan Database:

!/ Produce at the end 1. start start time of the token. In this example the domain

subgoal (Resource. transaction tx1);

eq(tx1. obj ect, object.nutex); IS [_Inf +Inﬂ'

eq(txl.time, end); 2. end end time of the token. In this example, the domain is
eq(txl.quantity, 1); [_inf +im‘]_

o)) 3. duration duration of the token, which is derived from the
_ Although in CAPR, and subsequently, EURQRAIme- startandend In this example, the domain is [1 +inf].
lines are not first class members of the paradigm, the notion) o))])

of a timeline is very common. Therefore, we declafiérae- 4. object implied variable with domain populated by all in-

line class and we provide an efficient implementation and stances of a class. In this example, the domain is popu-
representation: lated with{spirit, opportunity}.

T: transaction

({spirit.battery, opportunity. battery}é

[-inf +inf])

D @D - =

* Requires

rel ation

Ti mepoi nt
Active
Token

I nactive
Token

G Transaction €D

Explicit
Const r ai nt

<+—>

Inplied
Const rai nt

Figure 2: Plan database elements for partial glg@}{}}

5. state records the possible states of a token as a result of
flaw resolution operations which we describe later.

Theparameter variablemtroduced depend on the predicate
description of the token. In this case, sif@és an instance
of theGoi ng predicate, we introduce the following:

6. from - the location the rover is leaving from. In this ex-
ample the domain is populated with all instances of the

Locationclass i.e {rock,hill,lander,martian-city.

. to - the location the rover is going to. In this example the
initial domains are identical.

NDDL allows the specification of constraints in the initial
partial plan. For examplespirit must be at locationock at
timeO:

/1 Introduce token A

goal (Rover. At A);

/'l Constrain |location variable
eq(A. 1, rock); // cO

/1 Constrain object variable
eq(A. object, spirit); // cl
/1 Constrain start <= 0 <= end
leq(A start, 0); // c2

leq(0, Aend); // c3

The partial planp, is given by the tuple{G,A}, {c0, c1,
c2,c3).

Inference with Compatibilities All supported tokens in

a partial plan are represented Astive Tokens All token
flaws (unsupported tokens) that can be inferred from the par-
tial plan and the model are representedractive Tokens
Figure 3 illustrates the states and transitions of tokens in
EUROPA, . A token isActiveimmediately when introduced

I nserted

I nserted by by Execution
External dient of a Conpatibility
activate ner ge

t

cancel

cancel

Figure 3: Token State Transition Diagram

corresponds to a token flaw which can be resolved by either
mergingwith a matchingActive Tokeror by choosing to use
the resolverT via activation

We use a simplified version of a compatibility for
Rover::Goingto illustrate the tokens and associated con-
straints that arise as a result of matching a compatibitity t
anActive Token

0. Rover:: Goi ng{

1 neq(to, from); // to !=from

2 neet s(obj ect. At A);

3. eq(A. 1, to);

4. subgoal (obj ect. battery.transaction T);
5 eq(T.start, start);

6. }

The head of the compatibility is matched with a g@al
immediately upon processing the initial partial plan yiegl
a token flawA, a set ofconstraintsand a transactiom. Fig-
ure 2 shows\, T, and the constraints with line numbers that
indicate the correspondence in the compatibility. Lined-pr
duces a constraint among the parameter variabl€s bine
2 introduces the token fla. It also imposes aequality
constraint between thebjectvariables ofG andA. Line 3
equates the parameter variabdekandG.to. Line 4 requires
a new transactiofl in the database. Since EUROP#oes
not currently support interval transactions, we generate a
implicit constraint equating.endto T.start Finally, Line 5
equates the start times & and T. Since disjunctive com-
patibilities are modeled by variables, these variablesrare
troduced as flaws when matching a compatibility tofan
tive Token Only after deciding these variables are the corre-
sponding tokens and constraints introduced.

Flaw Generation and Resolution

Queries and events are provided so that clients can readily
access flaws from the Plan Database. Events provide im-
mediate access to changes within the Plan Database, but re-
quire clients to subscribe in order to receive the updates. F
example, when ainactive Tokernis inserted into the plan
database through execution of a compatibility, a corredpon
ing message is posted to any registered clients. Simiksly,
variables are introduced, restricted or relaxed, clierdy m
observe these events and synchronize their flaw state accord
ingly. Furthermore, events are raised as resource profiles
become valid or undetermined. Clients may also query the

by an actor external to the plan database, as is the case withdatabase for the current set of all unbound variables, token

a goalG specified in an initial partial plan. A token is ini-
tially Inactivewhen introduced by a compatibility matching
anActive TokenAs prescribed by CAPR, an inactive token

flaws and undetermined resources.
As in CAPR, the following methods of resolution are pro-
vided in EUROPA for each category of flaw:

e Token Flaw- inactive tokens must bactivatedin which
case we restrict thstatevariable to the valuéctive or
mergedin which case we restrict thetatevariable to the
valueMerged If a token is merged, equality constraints
between the matched variables of the inactive token and
the target active token are posted. EUR@PAovides an
“disable” operation to avoid posting equality constraints
This provides significant performance advantages as it re-
duces the growth rate of the resulting constraint network.

e Variable Flaw- unbound variables are resolved by assign-
ing values directly or posting constraints.

e Resource Flaw resource flaws are resolved either by
constraining or assigning itshjectvariable or by posting
constraints on timepoints to order transactions.

Plan Assessment

Some applications may have different models of interaction
with EUROPA; and will want to impose relaxations on the
set of flaws that should be resolved by the planner. For ex-
ample, imagine a multi-agent system where each planning
agent shares a single model, yet each is specialized to re-
solve flaws only in a sub-domain of expertise. Each planning

agent could inspect the shared database and work on those

flaws it knows how to resolve. Each planning agent would
be done planning when it finished resolving all flaws in its
“view”. EUROPA; provides a flexible decision management
framework to filter the set of flaws that need to be resolved
to complete a partial plan. Semantically, the “view” spec-
ification amounts to aelaxationof the strict interpretation

of the set of flaws in a plan. The view specification allows
clients to indicate:

temporal restrictions - all flaws outside a given planning
horizon are excluded.

predicate restrictions - all flaws derived from a given set
of predicates are excluded.

variable restrictions - variable flaws on a given set of dy-
namic and/or infinte variables are excluded.

custom restrictions - specialized filter conditions may be
developed and integrated as needed by the client.

Constraint Propagation

EUROPA; ’s constraint propagation infrastructure is illus-
trated in Figure 4. The model statement:

cal cConsunption(tx. quantity,

introduces aConstraintwith the ConstrainedVariables
T.quantity, from, andto. As the domain of each con-
strained variable in the constraint is propagated, the@han
in the domain triggers a message to that effect that is del-
egated to theConstraintEngine Each constraint is reg-
istered with aPropagatorallowing customized propaga-
tion strategies for different constraints. This framework
allows for sepcialized domains, constraints, variabled an
propagators to be integrated in an open and flexible man-
ner. The framework borrows heavily from the design of
the CHOCO kernel (Laburthe & the OCRE Research Group
2001). EUROPA provides a library of useful constraints

from to);

Const r ai ned Constrai nt
Variable [| Engine [| o°Pagator
[I
Abst ract .
Dormai n — Constraint

Figure 4: Constraint Propagation Framework

I
dient isi i
Deci si on Filter
(e.g. Planner) Manager :\‘ & Fl aw Spec.

| Pl an
| Dat abase

| Y

Constrai nt
| Engi ne

y
Schena |

Mbdel Spec.

Rul es

la—
> Engi ne |

Def aul t I
Pr opagat or

Resour ce |
Pr opagat or

STN |
Pr opagat or

!y

I
| Custom II
Const rai nt

Figure 5: System Diagram

and three propagators: 1. a default propagator which dele-
gates constraint enforcement to each individual congtrain

2. aresource propagator which propagates transaction load
on resources; and 3. a temporal propagator which propa-
gates temporal constraints using a simple temporal network

EUROPA; Architecture

We now describe the overall EURORPSystem Architecture
and discuss how it accomplishes the design goals.

Figure 5 describes the internals of the EURQP4an
Database operating as a server to one or more clients.
The server is an assembly of EURORf&®mMponents inte-
grated for the needs of the particular application. Pien
Databaseprovides a set of plan services of the server at the
abstraction level of primitives in CAPR i.e. tokens, tragztsa
tions, constraints, resources, variables. Tuastraint En-
gine and related components propagate constraints among
variables and detect violations. The provided constraints
propagators can be freely integrated or omitted. Riées
Enginereacts to changes in the partial plan i.e. token acti-
vation and variable binding. Th&chemas the in-memory
store for the domain model. It is used by the plan database
to enforce type restrictions and by the rules engine to match
and execute compatibilities. EUROPAcludes a chrono-
logical backtracking planner as a standard client comppnen
though many applications develop their own clients. The
Decision Manageuses a view specification to manage the
set of flaws for a client.

Customizability EUROPA is highly customizable. Sup-
port for resources may be ommitted if a problem does not
require resources. If a problem does not require compat-
ibilities (e.g. a scheduling problem), the rules engine can
be omitted. If temporal constraints are not important in a
problem, the temporal propagator may be removed and/or
replaced with the default propagator. Only required con-
straints need to be registered. This form of customization
is useful as it allows systems to avoid incurring costs for
components that are not required. EURQRMSO provides

a language to customize the system for new domain models.
Furthermore, heuristic and flaw specifications are also pro-
vided. An open API ensures flexbility in how EUROPS
integrated.

Extensibility EUROPA is highly extensible. As new

problems are encountered, or new algorithms are developed,

there are many ways to integrate new capabilities as special

We plan to extend our modeling language in two ways: 1.
provide better modeling support for time-invariant redati
ships; 2. provide means to describe optimization criteria.
Some of the domains, such as the image processing domain
require the specification and reasoning about relatiosship
that are immutable with respect to time. We currently pro-
vide some support for specifying static data, but we need to
include support for relationships. Furthermore, many plan
ning applications require not only finding a plan but finding a
plan with respect to certain optimization criteria. We ptan
extend NDDL to allow describing optimization criteria such
as minimize makespan or minimize resource consumption.

Finally, we have numerous plans for extending our im-
plementation. We plan to extend the set of planning ser-
vices provided to include domain analysis techniques such
as reachability. We are already working on a PDDL front-
end for EUROPA. We also plan to extend the set of

ized components e.g. constraints, propagators, resources services provided by adding direct support for lifted local

This is essential for success in research and mission deploy
ments.

Speed EUROPA; has produced significant gains in speed
over EUROPA. The primary contributors to the improve-
ment arise from: 1. Fast interfaces and specialized im-
plementations: the ability to tune implementations us-
ing inheritance provides speed improvements in key ar-
eas such as operations on domains. 2. Efficient merging:
EUROPA, provides an algorithm to handle merging opera-
tions that disables redundant constraints arising in tha pl
database. 3. Incremental relaxation: when relaxing a vari-
able, EUROPA relaxes only variables reachable through
the constraint graph. 4. Direct support for static facts:
EUROPA, uses objects to capture static facts. Objects can
be referenced through variables. We provide a pattern for ex
istentially quantifying objects. By contrast, EUROPA used
timelines with a single predicate to capture this informati
incurring a high overhead through inefficient merging.

Future Work

We have presented a formalization of constraint-based plan
ning with resources and described EURQRAframework
that implements the formalization. EUROPK currently
being used by the Intelligent Systems Program to demon-
strate advanced robotic capabilities in the field. We have
plans to make this software available for use in research and
mission deployments.

We are currently working on many extensions to
EUROPA,. Regarding the theory, we plan to formalize
domain independent heuristics for resource-cognizamtpla
ners. The main challenge is the identification of useful
heuristics and the translation of static CSP heuristios int
a dynamic CSP setting. We also plan to work on obtaining
soundness and completeness results for different sulngoali
configurations. We know that there is a relationship between
the theory behind the languages of PDDL, TAL, NDDL, and
SAS+, and we plan to identify and describe the relationship
so that we can better understand how EUR@&#mpares
to these systems.

search planning; more specialized constraint reasoneds; a
hybrid solvers. The current EURORANnplementation has
been designed to deal with consistent as well as inconsisten
states but only a backtracking planner has been implemented
to date. We need to extend the notion of flaws to include vi-
olations to be able to handle local search methods, and test
whether the implementation assumption holds.

Related Work

EUROPA is certainly not the only planner that can plan
with resources and express resources as first class citi-
zens. IxTeT already plans with resources, however, IxXTeT
requires modeling state changing properties as attributes
EUROPA; allows the expression and reasoning of arbitrary
objects, not just objects that behave like attributes. Ix-
TeT, however, provides reasoning support for resources tha
CAPR doesn't provide, such as the pruning of "dominated”
transaction ordering decisions. We were unable to find
soundness and completeness proofs of planning with re-
sources in IXTeT.

ZENO (Pemberthy & Weld 1994) is a sound and com-
plete planner that handles actions with temporal quantified
preconditions and effects. ZENO can reason about deadline
goals, piecewise-linear continuous change, externalteven
and, to a limited extent, simultaneous actions. In paricul
actions are allowed to overlap in time only when their efect
do not interfere. From what we can tell, there is no special
purpose reasoning on constraints, and instead, variable as
signments ensure that non-linear equations reduce tarlinea
equations. In contrast, EUROPRArovides 1. a language for
expressing declarative resources, 2. ability to expreseri
types of resources, and 3. ability to handle any type of con-
straint.

PDDL (Fox & Long 2003), the planning competition lan-
guage, has been extended to cope with problems of increas-
ing size and complexity. However, the extensions have been
mainly driven by the capability of planners that have par-
ticipated in the competitions. EUROPRAddresses some
of the concerns with PDDL as described in the JAIR spe-
cial issue, however PDDL can express some things that

EUROPA, cannot deal with, yet. PDDL, has a process-
driven time semantics and is unable to deal with precon-
ditions that hold over specific intervals of time and effects
that can happen at arbitrary points during action execution
In EUROPA; resources are first-class citizens and can be
declaratively described. In PDDL, resources are represent
by numeric fluents. The ability to represent numeric flu-

ents means that planners can then subgoal based on internal

numeric states. However, it is difficult and awkward to ex-
press a unified view of resources and their properties, which

Proceedings of the International Conference on Robotics
and Automation

Dvorak, D.; Rasmussen, R.; Reeves, G.; and Sacks, A.
2000. Software architecture themes in "jpl”'s mission data
system. INEEE Aerospace Conference

Fox, M., and Long, D. 2003. Pddl 2.1: An extension to
pddl for expressing temporal planning domaidsurnal of
Artificial Intelligence Research0.

Frank, J., and Jonsson, A. 2003. Constraint based attribut

means that planners cannot take advantage of dedicated rea- @nd interval planningJournal of Constraint$(4).

soning algorithms to solve resource problems. PDDL is able
to describe plan metrics, a capability that we plan to inelud
in EUROPA,. PDDL is a stronger language for specify-
ing goals, e.g. it is possible in PDDL to express goals with
disjunctions. However, in PDDL, goals are required to be
grounded. In EUROPAitis possible to describe goals along
with constraints on its variables.

The Coupled Layered Architecture for Robotic Auton-
omy CLARATY, is an architecture with goals similar to those
of EUROPA,. EUROPA is being developed in order to
support the development of generic algorithms, reduce the
need for recurring problems for every deployment, simplify
the integration of new technologies, use the same framework
across deployments, increase functionality by leveraging
more mature base, and do all of this efficiently. These are
the same motivations that drive CLARATy. CLARATY is
a two-layered architecture. The first layer is the decision
layer that includes the planner, models, and heuristice Th
second layer provides the abstraction of the specific robot
components. The first layer is based on ASPEN/CASPER
system architecture which is similar to EUROP# archi-
tecture in that the search engine performs operations on an
activity database which in turn performs constraint propa-
gation over parameters and temporal constraints. ASPEN,
however, allows you to solve problems using local repair al-
gorithms only. We provide a framework where you should
able to implement a local repair planner and a chronological
backtracking planner using some the same components.

Acknowledgements

We wish to thank the rest of the EUROPdevelopment
team: Andrew Bachmann, Will Edgington, Michael latauro,
and Sailesh Ramakrishnan, for their important contrimsgio
to this work. This research was supported by NASA Ames
Research Center and the NASA Intelligent Systems pro-
gram.

References

Bresina, J.; Jonsson, A.; Morris, P.; and Rajan, K. 2003.
Constraint maintenance with preferences and underlying
flexible solution. InConstraint Programming Workshop
on Change and Uncertainty

Despouys, O., and Ingrand, F. 1999. Propice-plan: To-
wards a unified framework for planning and execution. In
Proceedings of the 5th European Conference on Planning

Dias, M.; Lemai, S.; and Muscettola, N. 2003. A real-time
rover executive based on model-based reactive planning. In

Frank, J. 2004. Bounding the resource availability of par-
tially ordered events with constant resource impacP
ceedings of thé0*” International Conference on the Prin-
ciples and Practices of Constraint Programming

Golden, K.; Pang, W.; Nemani, R.; and Votava, P. 2003.
Automating the processing of earth observation data. In
Proceedings of th&'" International Symposium on Atrtifi-
cial Intelligence, Robotics and Space

ILOG. 1996. llog solver: User manual. Version 3.2.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in interplanetary space: Theory

and practice. IrProceedings of th&*" International Con-
ference on Artificial Intelligence Planning and Scheduling

Laburthe, F., and the OCRE Research Group. 2001. Choco,
a constraint programming kernel for solving combinato-
rial optimization problems. Available at http://www.chmc
constraints.net.

Muscettola, N.; Nayak, P.; Pell, B.; ; and Williams, B.
1998. Remote agent: To boldly go where no ai system
has gone beforéAtrtificial Intelligence103(1-2).

Muscettola, N. 2002. Computing the envelope for stepwise
constant resource allocations. Rmoceedings of th&!”
International Conference on the Principles and Practices
of Constraint Programming

Nesnas, I.; Wright, A.; Bajracharya, M.; Simmons, R.; Es-
tlin, T.; and Kim, W. S. 2003. Claraty: An architecture
for reusable robotic software. Proceedings of the SPIE
Aerosense Conference

Pemberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. IRroceedings of the 12th National
Conference on Atrtificial Intelligen¢d010-1015.

Tran, D.; Chien, S.; Sherwood, R.; no, R. C.; Cichy, B.;
Davies, A.; and Rabbideau, G. 2004. The autonomous
sciencecraft experiment onboard the eo-1 spacecraft. In
Proceedings of thé9*" National Conference on Atrtificial
Intelligence

Whalley, M.; Takahashi, M.; Schulein, G.; Freed, M.;
Christian, D.; Patterson-Hine, A.; and Harris, R. 2003.
The nasa army autonomous rotorcraft projectPtoceed-
ings of the American Helicopter Socigi9'" Annual Fo-
rum, 61-677.

